Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The investigation of brain health development is paramount, as a healthy brain underpins cognitive and physical well-being, and mitigates cognitive decline, neurodegenerative diseases, and mental health disorders. This study leverages the UK Biobank dataset containing static functional network connectivity (sFNC) data derived from resting-state functional magnetic resonance imaging (rs-fMRI) and assessment data. We introduce a novel approach to forecasting a brain health index (BHI) by deploying three distinct models, each capitalizing on different modalities for training and testing. The first model exclusively employs psychological assessment measures, while the second model harnesses both neuroimaging and assessment data for training but relies solely on assessment data during testing. The third model encompasses a holistic strategy, utilizing neuroimaging and assessment data for the training and testing phases. The proposed models employ a two-step approach for calculating the BHI. In the first step, the input data is subjected to dimensionality reduction using principal component analysis (PCA) to identify critical patterns and extract relevant features. The resultant concatenated feature vector is then utilized as input to variational autoencoders (VAE). This network generates a low-dimensional representation of the input data used for calculating BHI in new subjects without requiring imaging data. The results suggest that incorporating neuroimaging data into the BHI model, even when predicting from assessments alone, enhances its ability to accurately evaluate brain health. The VAE model exemplifies this improvement by reconstructing the sFNC matrix more accurately than the assessment data. Moreover, these BHI models also enable us to identify distinct behavioral and neural patterns. Hence, this approach lays the foundation for larger-scale efforts to monitor and enhance brain health, aiming to build resilient brain systems.more » « less
-
One of the most significant health issues the world is now ex- periencing is mental health. Since it is challenging to mea- sure, it fails to motivate behavioral change or other inter- ventions targeted at improving it. The lack of such mea- surements discourages learning and behavior modification, which are critical for enhancing healthy habits. Neuroimag- ing promises to provide a window into mental health. The use of resting fMRI (rs-fMRI) models capable of categorizing mental health at the individual level has the potential to pro- vide insights into how it impacts the brain. Here, we applied a deep learning approach to classify a mental health score using static functional network connectivity (FNC) derived from rs-fMRI data. Comparisons were made against traditional machine learning approaches to evaluate the model’s perfor- mance. The discriminative features present in each mental health category were analyzed for interpreting the deep learn- ing model. The experiments resulted in a classification ac- curacy of 91%, 91%, 100%, and 100% for excellent, good, fair, and poor mental health classes. Results also highlighted the most salient brain network in the sFNC matrix for each mental health score classification.more » « less
-
While one can characterize mental health using questionnaires, such tools do not provide direct insight into the underlying biology. By linking approaches that visualize brain activity to questionnaires in the context of individualized prediction, we can gain new insights into the biology and behavioral aspects of brain health. Resting-state fMRI (rs-fMRI) can be used to identify biomarkers of these conditions and study patterns of abnormal connectivity. In this work, we estimate mental health quality for individual participants using static functional network connectivity (sFNC) data from rs-fMRI. The deep learning model uses the sFNC data as input to predict four categories of mental health quality and visualize the neural patterns indicative of each group. We used guided gradient class activation maps (guided Grad-CAM) to identify the most discriminative sFNC patterns. The effectiveness of this model was validated using the UK Biobank dataset, in which we showed that our approach outperformed four alternative models by 4-18% accuracy. The proposed model’s performance evaluation yielded a classification accuracy of 76%, 78%, 88%, and 98% for the excellent, good, fair, and poor mental health categories, with poor mental health accuracy being the highest. The findings show distinct sFNC patterns across each group. The patterns associated with excellent mental health consist of the cerebellar-subcortical regions, whereas the most prominent areas in the poor mental health category are in the sensorimotor and visual domains. Thus the combination of rs-fMRI and deep learning opens a promising path for developing a comprehensive framework to evaluate and measure mental health. Moreover, this approach had the potential to guide the development of personalized interventions and enable the monitoring of treatment response. Overall this highlights the crucial role of advanced imaging modalities and deep learning algorithms in advancing our understanding and management of mental health.more » « less
An official website of the United States government
